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Abstract— We present a 1/10th scale autonomous vehicle
capable of navigating hallways and fulfilling a variety of
challenges. Utilizing onboard compute, an RGB-D camera, a
small infrared distance sensor, and an inertial measurement unit
(IMU), we have used existing tools and have written new code to
maximize the performance of this vehicle in the navigation of a
closed track. In addition to these technical challenges, we have
done research on the importance of human-vehicle interaction
with advancements in autonomous vehicle technology, as well
as the performance benefits available through deep learning in
developing similar perception and control algorithms.

I. INTRODUCTION

Autonomous vehicles are currently an extraordinarily pop-
ular field of work and research in the robotics community
with teams of electrical, mechanical, computer, and systems
engineers racing to develop the first viable solutions for
autonomy on our roads. Due to the challenging nature of
the problems faced in the pursuit of true autonomy, as well
as the unpredictability of the environments humans typically
drive on, there is still much progress to be made.

This project has sought to tackle some of those same
challenges on a scaled-down level in an effort to understand
the magnitude of the problem. We have built an autonomous
system based on a 1/10th scale vehicle that exhibits some
of the qualities needed in real-world autonomous vehicles,
including obstacle detection and avoidance and state estima-
tion. In addition to the physical scale of the vehicle being
drastically different from the requirements of the real world,
the environment the vehicle navigates is also far simpler,
with no traffic signals, road markings, pedestrians, cyclists,
or even other vehicles.

Through this project, we chose to tackle the following
challenges: colliding with an obstacle and recovering, esti-
mating the coefficient of friction between the rear wheels
and the ground in real-time, and stopping at a stop sign
on the course. These challenges all have applications in the
real world (although recovering from a collision by immedi-
ately reversing is not directly applicable to or desirable for
passenger vehicles). By estimating the coefficient of friction
during vehicle transit, a control algorithm could make better
decisions on how to navigate the terrain and whether it is
currently safe to drive. The application of stop sign detection
is clear and could be generalized to include the myriad traffic
signs on our roads today.

In pursuit of these objectives, we encountered many
challenges and quickly realized the necessity of creating
robust algorithms for realistic driving situations. Even in our
relatively constrained environment, there were many factors
that could throw our autonomous vehicle off course and

potentially into a violent collision. Of course, for a full-size
autonomous vehicle driving at high speeds on the road, there
are millions of situations the controller needs to be prepared
for.

In working on this project, we took inspiration from other
similar projects that had solved these types of challenges in
a more robust manner, as discussed below in Section II. We
then discuss the methods by which we arrived at our vehicle’s
current level of performance in Section III. Next, we analyze
the results of the racetrack and the related challenges in
Section IV. In Section V, we conclude with learnings from
this project, and following that are the appendices on the
importance of Human-Robot Interaction with autonomous
vehicles and how we could have used Deep Learning to
improve our performance.

II. RELATED WORK

Currently, autonomous vehicle industries rely on a variety
of sensors to achieve autonomy. The significance of these
sensors lies in their ability to help autonomous vehicles
perceive their surroundings, make informed decisions, and
safely navigate roads. LiDAR, radar, cameras, GPS, and
inertial sensors are among the most commonly used sen-
sors in autonomous vehicles. Each type of sensor has its
own unique advantages and disadvantages [1]. The Intel
RealSense camera is a combination of sensors, including
a stereoscopic pair of infrared cameras, an infrared laser
projector, and an RGB camera. These cameras can be
used in a variety of robotic applications, including object
recognition, obstacle avoidance, indoor navigation, and 3D
reconstruction. They produce accurate and reliable depth data
and compare favorably to other commercially available depth
sensors [2].

Visual SLAM is used in robotics to create a map of
an unknown environment while simultaneously tracking the
robot’s location within that environment. [3] reviews and
compares various approaches to SLAM and discusses their
advantages and limitations. The use of stereo cameras and
IMU data fusion and how they positively impact the perfor-
mance of Visual SLAM is also discussed.

Motion planning is a fundamental problem in autonomous
mobile robots that have been tackled by various algorithms.
One widely used approach is the sensor-based method, which
has demonstrated success in achieving accurate path tracking
and obstacle avoidance. For example, [4] proposes a sensor-
based method for motion planning of nonholonomic robotic
vehicles. The authors use sensors like Lidar and cameras



to track the desired path and avoid obstacles. Another al-
gorithm, presented in [5], employs sensory data to generate
safe paths for robots in dynamic environments. The algorithm
assigns costs to feasible paths based on factors like distance,
clearance, and smoothness. These examples illustrate the
importance of sensor-based methods in motion planning and
their potential to improve the efficiency and safety of robotics
applications. Our approach is to use sensor measurements
and the actual dimensions of the course to determine the
motion of the vehicle.

However reliable a sensor is, there is always imprecision
in measurements to account for. To maintain good movement
of the wall following robot, there is a need for a controller.
Some of the most commonly used control algorithms are
Fuzzy Logic [6] [7], Genetic Algorithm, Neural Network [8],
Model Predictive Control [9], PID [10] [11], and a hybrid
of these [12] [13] [14]. There are multiple papers focusing
on the improvement of the tuning of PID control using
algorithms [15] [16] [17]. Our approach is to use a PID
controller as well to ensure the movement of the robot is
good.

An IMU is used to measure the orientation, position, and
motion of an object in 3D space, and it has a wide range of
applications. In [18], it is used in conjunction with a 2D laser
scanner and a stereo vision system to create a detailed map
of the environment, including both geometric and semantic
information. [19] uses GPS data to estimate the vehicle’s
speed and heading, and the magnetometer data(from IMU)
to estimate the vehicle’s sideslip angle. Using the estimated
sideslip angle and other sensor measurements, a model
is developed to estimate the tire-road friction coefficient,
and [20] proposes an approach that utilizes the IMU data
to estimate the vehicle’s body sideslip angle and attitude,
and the global navigation satellite system data to improve
the estimation accuracy. Adaptive Kalman filters are used
to estimate the vehicle’s sideslip angle and attitude. Our
approach is to read accelerometer measurements from the
IMU and, through a rough idea of the coefficient of friction
of concrete [21], get an estimate of the coefficient of friction
of any surface.

III. METHODOLOGY
A. Hardware

At the beginning of this challenge, we were provided with
the following items: an ODROID XU-4 as our compute, an
Intel RealSense D435 as our primary method of perception,
a %th scale Monster Truck chassis with a steering servo and
brushed DC motor, a Mini Maestro Servo Controller, an IR
Distance Sensor, Phidget 9-axis IMU, a DC buck converter,
and a Lithium Polymer (LiPo) battery. While we opted not
to use the IR distance sensor for most challenges due to its
limited range, we used every other component and fabricated
others to complete this car build.

The purpose of this autonomous vehicle is to compete
in a timed lap of a rectangular section of corridor located
inside the engineering center at the University of Colorado,
Boulder. Therefore, the vehicle must be able to navigate such

an environment with both speed and reliability while being
able to withstand any collisions, accidental or otherwise.

We began by laser-cutting an acrylic plate that was
mounted on top of the car, providing a platform to mount
much of the hardware, including the RealSense camera near
the front, the IMU near the center of gravity, and the
ODROID and Mini Maestro towards the back of the vehicle.
Our power electronics, including the LiPo battery and DC
buck converter, were housed below the acrylic platform in
order to maintain a lower center of mass for the car.

All of our electronics are powered by one LiPo battery.
This battery is connected in parallel to the Electronic Speed
Controller (ESC), which provides power to the brushed DC
motor and the steering servo. It is also connected in parallel
to the DC buck converter, which steps down the voltage from
10-15 volts to 5 volts, providing power to the ODROID
and other low-voltage electronics. Initially, we had made
the decision to separate the batteries after we experienced
ODROID brown-outs (i.e. the ODROID computing unit did
not have enough voltage to function as normal) following
voltage sag in the batteries when the motors ran at high
speed. However, upon further testing, we found that our
batteries had not been not fully charged and that we could
easily run the entire system on one LiPo battery.

XI4015 DC-DC Buck Converter

Adafruit IR Distance Sensor
GP2YOAT10KOF

Fig. 1: A side view of our autonomous vehicle

The final build for our car has worked well and has proved
durable against crashes during our testing phases. Separating
the power electronics into two subsystems has provided extra
resilience and allowed us to test the perception and controls
separately at times.

B. Reactive Wall-Following Controller

Due to the simplistic nature of the course set out in this
challenge, we developed an equally simple controller that
allows the vehicle to centralize itself between walls and take
corners at high speeds. In order to approach this problem, we
needed to first get information from the environment relating
to our position on the track. The Intel RealSense RGB-D
camera mounted on the front of our vehicle provided a depth
image of the space we aimed to navigate, so we primarily
rely on this data for our state estimation and reactive control.

To handle noise in the depth data and simplify the logic
necessary for our controller to navigate the course, we first



2
5
8
o
2
©
o
g
IS
S
=
»
@
&

Fig. 2: Top view of our autonomous vehicle (the bumper has since been affixed more
securely)

wrote a ROS node that provided distance estimates for the
left, right, and center areas of the depth images. This was
achieved using a large kernel for the center and two smaller
kernels for the left and right sides of the image, over which
the depth data was averaged to produce three estimates of
distance as in 3. We found that the borders of the depth image
were prone to noise and, as such, moved the “averaging
regions” for the left and right depths away from the center of
the depth image as a whole. After some testing, we settled
on a width of 50 pixels for the left and right regions and
a width of 100 pixels for the center region to perform this
averaging calculation over the entire 848x480 pixel depth
image. Our controller then subscribed to this depth data
in order to inform its decisions throughout its time on the
course.

In addition to using this distance data to inform the
decisions of the main controller, we also subscribed to this
data with a PID controller that adjusted the steering angle of
the front wheels while the car was moving straight. The aim
of this PID controller was to keep the vehicle centered in the
hallway or just to the right of the center (following a semi-
optimal racing line). We used the Simple PID library for
Python for the controller implementation [22]. We adjusted
the gains of this PID controller to avoid oscillatory behavior,
and it was able to reliably keep the vehicle steering straight
and avoiding walls on the straightaways of the course.

Our main controller works as a state machine and can
initiate a variety of actions, including centering the vehicle
straight, turning right, and stopping when an obstacle gets too
close to the front bumper. It subscribes to the aforementioned
distance information, as well as the PID gain for steering
on long straightaways. The controller updates at 10 HZ,
allowing it to make decisions based on new data from the

Fig. 3: An approximation of our depth calculation strategy. The entire picture represents
the depth image exported by [23]. The left depth is extracted as an average over the
blue region, the right over the green region, and the center over the orange region.

camera, which is running at 15 FPS. The main body of the
controller is shown below in Algorithm 1: updateState().

Algorithm 1: updateState()

1 if center Distance < stopDistance

2 | stop();

3 else

4 if center Distance > turnDistance

5 if center Distance > slowDownDistance
6 | straightFast();

7 else

8 | straightSlow();

9 else

10 if (robot.isTurning and

center Distance > turnDistance) or
right Distance < turnAbortDistance

11 ‘ robot.isTurning = False;
12 else

13 turnRight();

14 robot.isTurning = True;

Fig. 4: A simplified representation of our state machine

When traversing a straight section of a corridor, the
PID controller balances the left and right depth readings
to maintain a position central to the width of the corridor
as in figure 5, though we found that it was advantageous
to bias the “center” of the corridor by scaling the left
distance by 90 percent resulting in a vehicle trajectory that
more closely followed the right wall of the corridor. While
simply gauging the right distance and following the right
wall directly would have been a simpler implementation,
we observed that incorporating the left distance enabled the
vehicle to more accurately center itself when the corridor
width was irregular, as in figure 6.

As the racetrack consists of a rough rectangle traversed
clockwise, our autonomous vehicle must detect an impending
rightwards right angle turn and respond accordingly. This is
accomplished by referencing the sensed center depth against
a threshold turnDistance and instigating a sharp right turn
(full lock, or as sharp as possible) when the center depth
falls below that threshold as in line 10 in algorithm 1. The
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Fig. 5: An approximation of vehicle travel down a straight corridor. The vehicle
(represented by the blue box) is balanced in the center of the corridor via PID control
referenced by the left (blue) and right (green) distances, maintaining an approximately
regular trajectory down the center of the corridor, represented by the orange arrow.

vehicle then returns to corridor-centering PID control when
the center distance exceeds the turnDistance threshold after
a short duration of full lock leftward correctional turning
input as in figure 7. We found that the right turn duration
was often longer than desired and that the leftward correction
after the completion of the rightward turn enabled the vehicle
to resume corridor centering more accurately after a turn.

However, the PID controller is not flawless in centering
the autonomous vehicle in the corridor. Sometimes, as the
vehicle drifts to the right-hand boundary of the corridor,
the center depth is sensed as below the turnDistance
threshold. This would lead to an unintentional right turn in
the vehicle where there is not a turn in the corridor race
course itself, followed swiftly by a sharp collision with the
right-hand corridor boundary, potentially resulting in damage
to the vehicle and certainly resulting in a failure of the
vehicle to complete the lap. Therefore, if a turn is initiated
and the vehicle immediately senses that the sensed right
distance is less than a threshold turnAbortDistance, the
turn is aborted, and the full-lock correctional turn is applied
immediately (see line 10 in algorithm 1) as in figure 8.
Anecdotally, we found that this logic is very effective in
allowing the vehicle to dodge obstacles in its path.

For each action, we need to set the corresponding joints
to the correct position or speed. In this case, we only have
two degrees of freedom: the front steering servo motor and
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Fig. 6: As in figure 5, the vehicle must be able to continue down the corridor when
the boundaries of such are irregular, such as to accommodate a doorway to an adjacent
room.

the rear brushed DC motor. Each of the actions taken by the
controller sets these joints using a ROS node [24] written for
the Pololu Mini Maestro [25]. For example, the stop action
sets the servo to straight and then stops the motor, the action
that steers the robot straight slowly sets the motor to a slow
speed and sets the servo to the steering angle provided by
the PID controller for wall-following.

This controller took a great amount of tuning to correctly
navigate the course and is not entirely robust. However, given
such simple control logic, it is extremely fast and responsive,
especially when compared to other algorithms we explored
implementing for our relatively limited computational re-
sources, such as SLAM for navigation.

C. Collision Management

The most interesting challenge to our team was that of
collision management, or being able to back out of a collision
when one occurred. The desired behavior would be to cause
a collision with an obstacle or pedestrian, then to have the
car autonomously back out of the collision and wait for the
obstacle to be removed from the course. Such a collision
is instigated by an object suddenly placed in the vehicle’s
path. In pursuit of this behavior, we primarily utilized the
Intel RealSense camera’s depth data, as well as the provided
Infrared distance sensor. Because the behavior is relatively
simple, we opted to use an equally simple state machine to
dictate when the car was to reverse and wait for the obstacle



Initiating a Right-Angle Turn

Finishing a Right-Angle Turn
Fig. 7: Top Image: When the center distance reading (orange arrow) is below
the turnDistance threshold, the vehicle (blue box) initiates a full-lock (i.e. as
sharp as possible) right turn. Bottom Image: After the center distance exceeds
turnDistance following a right turn, a correctional left turn is applied.

to move, as outlined in algorithm 2.

We found that for distances less than about 30 centimeters,
the depths returned by the RealSense camera were extremely
unreliable. The vehicle would routinely stop about one foot
before the obstacle rather than colliding with it. Though this
is usually a more desirable outcome than an outright colli-
sion, we were challenged with recovering after a collision
had occurred. Therefore, once the depth was below the stop
threshold as in algorithm 1 line 1, algorithm 2 is applied
using only the depths returned by the depth sensor. First, the
vehicle barrels at full speed into the obstacle, see 1. Then,
once the collision has occurred, the vehicle reverses until it
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Fig. 8: As the robot travels through the corridor from bottom to top: first, an
unintentional right turn is initiated as imperfections in the PID controller orient
the vehicle towards the right-hand wall, causing the sensed center distance to stray
below turnDistance. Second, the vehicle senses that as the sensed right distance
is less than turnAbortDistance, an unintentional right turn is in progress and
immediately initiates a sharp left turn. Third and finally, the vehicle returns to corridor
centering state, line 4 in algorithm 1.

is at a certain distance away from the obstacle; see line 3.
After this reverse maneuver, the vehicle waits patiently for
the object to be removed in line 5, whence the vehicle exits
the collision remediation state algorithm 2 returning to the
state machine described in algorithm 2.



Algorithm 2: onCollision()

1 while in fraredDistance > collisionDistance
2 | straightFast();
3 while in fraredDistance < stopDistance/2

4 | straightReverse();
5 while center Distance < stopDistance
6 ‘ stop();

7 resumeNavigation();

D. Stop Sign Detection

In order to fulfill the challenge of stopping at stop signs,
we once again used the RGB-D Intel RealSense camera we
mounted on our vehicle. This time writing a ROS node
to convert the RealSense’s RGB image into an OpenCV-
compatible format, we used a pre-trained image classifier
to accurately detect stop signs on the course and react to
their presence in real-time [26].

We first wrote a ROS node that converted the Intel
RealSense RGB image into a format that we could use
OpenCV to parse easily. While we heavily relied on this
article’s guidance from Intel’s documentation, we were able
to display the image using the OpenCV python library [23].
From here, we wrote a ROS python node that used our pre-
trained classifier to detect whether there was a stop sign in
front of the vehicle or not. This took some tuning to correctly
identify stop signs at the correct distance (about 2-3 meters to
give the car enough time to stop at an appropriate distance).

Once we had reliable data on whether the vehicle detected
a stop sign in its field of view, we were able to publish
this information for access in a controller similar to the
aforementioned reactive controller from subsection III-B.
When a stop sign was detected at a reasonable distance,
the controller would execute a control sequence telling it to
immediately come to a stop. After a pause of several seconds
(to allow for any miniature pedestrians to cross the track),
the vehicle would resume its course, ignoring the stop sign
until it had passed it.

While not especially sophisticated, we found this stop
sign detector to be effective, as well as computationally
inexpensive. It was reliable at detecting stop signs and
stopping at an appropriate distance, and due to the fact that
we were integrating this methodology with our prior reactive
controller, we were even able to avoid the stop sign in most
cases if it were in the path of the vehicle.

E. Real-time estimation of Coefficient of Friction

For our next challenge, we decided to attempt real-time
estimation of the coefficient of friction drag between the
vehicle’s wheels and the race track. We used a simple model
to estimate the coefficient of friction. Equation (1) represents
the net acceleration on our car of mass M, where F} is
the force applied on our car due to the motor and p is the
coefficient of kinetic friction.

Ma=F, — uMg (D

Fig. 9: A team member measures the force applied on a handheld luggage scale by a
drive wheel via a cord while another team member secures the opposite drive wheel
in a demonstration of why a limited-slip or locking differential is helpful in real-world
automotive application.

It is difficult to directly measure the force applied by our car
from the motor through the tires. We attempted to measure
the wheel torque by wrapping a length of cord around one
drive wheel and, while holding the opposite drive wheel
stationary, measuring the force applied to the cord with
a luggage scale (see figure 9). However, we decided that
the potential inaccuracies inherent in this method—such as
the losses incurred in the differential and the rest of the
driveline as well as the mass of the cord—were not worth the
potential gain in accuracy. Instead, we indirectly calculate it
by running our car on a surface with a known coefficient of
friction. In our case, we used rubber on concrete, which has
a coefficient of friction of approximately 0.6 [27]. The actual
acceleration of our car is calculated with an IMU mounted
on our autonomous vehicle. Since our autonomous vehicle
operates on flat terrain, we can calculate the net acceleration
on the car from our IMU acceleration readings in the x and
y directions.

Ma. = F, — p.Mg 2)
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Equation (2) and (3) are the two equations of motion,
subscript ¢ is for the concrete surface (known) and subscript
x is for the unknown surface, after canceling out F; from the
two equations we get a simplified Equation (4) for calculating
the coefficient of friction.
fe =% 1y “)
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We are calculating the coefficient of friction drag online
while our car is operating on an unknown surface. To
account for noisy results due to slipping, battery power, etc
our code maintains a sorted list of 100 recent coefficient
of friction calculations and publishes the median value to
the appropriate ROS topic. The brushed DC motor runs in
two modes: fast and slow. In both these modes, the force
F, applied on the car is different so we have different
measurements of acceleration a. in equation (3), the online
calculation of p, is done separately for these two modes, but
both these modes will ideally produce the same results for
the estimates of (1.

He =



FE. Other attempted challenges

In addition to the aforementioned challenges, as a team,
we tried several others. In an effort to further explore the
lessons learned from this project, we will outline the attempts
we took to make each of these other challenges work in this
section.

At the outset of the project, Visual-Inertial SLAM seemed
like a reasonable challenge, especially considering the exten-
sive documentation existing on implementing this method
with an RGB-D camera such as the RealSense we were
provided. However, we ran into a few main problems when
attempting this challenge. Firstly, we realized that the lack of
reliable odometry data would be problematic in the sensor-
fusion step of algorithms such as EKF or UKF SLAM.
Without wheel odometry, it would be far harder to reliably
estimate the pose of the vehicle. This would have been man-
ageable using landmark detection techniques for localization;
however, in the basement track where we were doing our
testing and planning to race, the choice of landmarks on
the walls and floor was sparse. The walls were entirely
blank, and due to the position of the camera near the ground
necessitated by the low profile of our autonomous vehicle,
much of the field of view of the camera consisted of the floor.
In addition to these difficulties, we quickly realized that the
ODROID did not provide us with sufficient computing to
handle the operations necessary for this real-time localization
and mapping.

Once we realized the infeasibility of navigation by a
SLAM technique on the hardware supplied from our attempt
at Visual-Inertial SLAM, we decided we would try to create
a sparse map of our surroundings during a trial run using
a Grid-Based FastSLAM library. There were two appealing
options: the Hector Mapping ROS package [28], and the
Gmapping ROS package [29]. While both of these options
addressed our concerns regarding limited compute and lack
of visual landmarks, we ran into other difficulties, mostly
related to scan-matching and odometry. With both libraries,
we had a hard time getting the scans to match from frame
to frame as the algorithms lost their notion of keypoints,
meaning we could not effectively build a map of the course
over time. We believe this was due to noise from RealSense’s
depth sensor or possibly from excess shaking or bobbing due
to the vehicle’s movement. In addition to this problem, we
still had no effective way to estimate the vehicle’s linear
velocity, even after trying to address this with various ROS
localization libraries meant to filter and fuse IMU data into
accurate odometry estimations.

Finally, we had minor successes in getting the vehicle to
drift around corners when taking turns. We achieved this by
varying the PWM sent to the motors when the vehicle was
turning right around the track. By sending the wheels into
reverse, we were able to turn with a turning radius of almost
zero, making it easier to take turns with a very tight radius.
However, we decided the better strategy was to set the wheels
to max forward speed for a brief moment when beginning the
turn, allowing the wheels to slide out behind the car while

not reducing the speed of the vehicle at the same time. We,
unfortunately, found that these turns were extremely hard to
control reliably (especially on the surfaces of varying grip in
the basement we were testing in), and decided that it would
be easier to complete the course reliably and quickly if we
were to take turns at a speed where we did not lose traction.
We realize that the incorporation of sensor readings from the
IMU may have aided our completion of this challenge. Given
our experiences and difficulties in using IMU readings for
SLAM techniques, we decided to attempt other challenges.

As a footnote, we would like to address a challenge that
seemed popular with other teams: attempting a jump. This
challenge seemed relatively straightforward, as with proper
tuning, a vehicle could simply be sent at the launch ramp
with a predetermined speed corresponding to a static PWM
value while the steering servo is set to dead center. While
we found this opportunity tempting, we decided that the risks
involved were too great. Our experience tuning the reactive
wall-following controller in section III-B showed that various
factors could influence a set drive motor PWM value, such
as the voltage level remaining in our battery. We also feared
the effects of weight imbalances incurred as the result of any
additional accessories such as bumpers or sensors we deemed
necessary for efficient and repeatable completion of other
challenges or the complete failure of the battery attachment
mechanism (a hook-and-loop fastener that has seen better
days). After watching other teams fling their vehicles into
oblivion resulting in broken front protective devices and
unpredictable ODROID operation, we are overall satisfied
with our decision.

IV. RESULTS

When we tested our car with its reactive wall following
algorithm on a representative race track, it was successfully
able to make turns and complete the track in a reasonable
time range from 40 seconds to one minute. Since the layout
of the track was not uniform, we had to fine-tune many of
the parameters like coefficients for our PID controller, the
distance at which our car makes the turn, motor speed, etc.
After parameter tuning, our car was able to complete a full
race track with 70-75 percent accuracy; the indeterminacy
was due to factors such as battery charge, other challenge
participants and their vehicles active in the track and unre-
liability in the depth sensors. There is some anxiety among
the team as to the performance of such a parameter-driven
model during the true competition, though we are confident
that we have exhausted the limits of our system given the
constraints of the competition.

In completing the actual race on a much shorter track,
our two successful runs were completed in 12.8 and 10.5
seconds, respectively. These times were below the average at
the time and took minimal tuning of the controller to achieve
after being moved to the new course.

Once applied as intended, we found that the stop sign
detection model was very accurate. With improper param-
eters used in the detector, we even saw the vehicle detect
stop signs as far as seven meters away from the front



of the vehicle. Once we correctly defined the parameter
relating to the perceived dimensions of our example stop
sign at a reasonable distance, as recorded by the RealSense
RGB stream, we were able to reliably stop at a distance of
approximately one meter ahead of the stop sign.

While we admit that the system and logic behind our
collision mitigation scheme are overly complex and therefore
prone to error, we were able to reliably instigate then back
out of a collision with a container lid in pre-competition
testing. We are excited to see how our autonomous vehicle
performs on this challenge in competition on the as-yet-
unknown race course.

As the surface of the race track was not uniform, the online
coefficient of friction drag on the vehicle was calculated to be
approximately between 0.63 to 0.7 during race simulations.

V. CONCLUSIONS

While we did not meet all of the objectives we initially
set out to achieve during the course of the project, we are
able to present a robotic system that successfully navigates
a closed course, as well as completes several other adjacent
challenges. We applied many of the concepts learned in
this Advanced Robotics course, such as the applications of
linear control systems and SLAM algorithms to real-world
robotics technologies. We were also able to develop hands-on
experience working with important tools in robotics software
engineering, such as ROS visualization and debugging tools,
as well as popular ROS packages.

Going into this project, much of the team did not have
hands-on experience with real-world robotics. We learned
that robots are prone to make the worst-possible action at the
worst possible time, the joys of ceaseless parameter tuning,
and the inevitable challenges inherent in a parameter-heavy
system. We grew to appreciate the necessity of accurate and
abundant sensing equipment. We found that even before a
concept of robot operation can be introduced into practice
that there is often more effort required to prepare both the
hardware and the software stack in order to realize our vision.

At the conclusion of the course of our work, we wonder
what would have been possible with different equipment.
The ODROID XU-4, while handling our implementations
with moderate effectiveness, proved to be inadequate for the
task of many modern techniques for image processing and
localization. While we were able to obtain workable data
from the RealSense D435, we found the depth sensor to be
prone to noise and inaccuracy. The competition that inspired
ours, the F1Tenth challenge, recommends an NVIDIA Jetson
for computing and a sophisticated LIDAR unit [30]. While
we appreciate that the challenges on the FlTenth circuit are
in many ways more difficult than what we attempted and
that such a setup is likely impractical to our setting, we
imagine what we may have been able to accomplish with
better equipment. At the same time, we also appreciate that
in the elusive “real world” the best possible sensors and com-
putation modules are not always available for every given
task. Experience working at the edges of our equipment’s
ability affords us valuable perspective.

This project was an excellent exercise in gaining famil-
iarity with the entire gamut of applications of real-world
robotics, including hardware, controls, perception, and plan-
ning. During the course of our work, we were also forced to
consider the triviality of what we were trying to accomplish
in comparison to the robotics technologies that are being
developed in industry and in academia today, as well as the
enormity of those extremely difficult challenges. Overall, we
feel that regardless of our performance, we learned valuable
skills from the project that will help with future robotics
challenges.



APPENDIX: HUMAN AUTONOMOUS-VEHICLE
INTERACTION

Autonomous vehicles have progressed far beyond Stan-
ley [31]. The automotive industry at large has worked
towards marketing autonomous vehicles at varying levels
to the general public, and one source estimates that in
2021 the autonomous personal vehicle market was worth
22.2 billion USD and that it will grow to 75.95 billion
USD by 2027 [32]. The SAE has developed a taxonomy
of autonomous vehicle ability, varying from no automation
requiring total human control (level 0) to fully autonomous
requiring no human control (level 5) [33] as described in
figure 10. Currently, only one company—Mercedes Benz—
has offered a vehicle for sale that has been certified to what
the SAE considers autonomous driving, where a human must
not maintain constant vigilance and be ready to take control
at all times [34], though several concerns are attempting
to develop fully autonomous taxis to varying levels of
controversy and success [35]. Beyond autonomous personal
vehicles, autonomous vehicles for construction [36] and food
delivery [37] have also been developed. The following is a
review of published work to advance these domains and how
they interact with human operators, other humans in vehicles,
and humans in their environment.
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Up to SAE level three, a human must be in the driver’s
seat of an autonomous personal vehicle and ready to take
control at all times. When a vehicle’s system encounters
a level of uncertainty, the human must be able to take
over and avoid a potentially dangerous situation quickly and
with a high level of effectiveness. Kim et al. performed a
statistical analysis of four different scenarios at four levels
of takeover request alerts and the time required by a human
to take avoiding action in four different scenarios [39]. The
authors also surveyed participants for qualitative evaluation
of the takeover requests. The authors found that a lower
time to takeover request was more effective than a faster
and that a dynamic time to takeover request generated by
driver behavior was more effective than a statically-defined
value and that the study participants preferred the dynamic
warning. However, what form should the alert take? Alerts

are generally presented as visual, auditory, or physical (vi-
bration) stimulus [40]. When takeover requests are audible,
it has been found that speech-based alerts combined with
electronic tones are more effective than electronic tones
alone [41]. Olaverri-Monreal et al. discovered that visual
alerts are more effective when the alert corresponds to the
level of situation urgency and that visual alerts are more
effective for drivers with high rates of smartphone usage [42].
At high levels of automation, Petersen et al. developed a
system to increase a human monitor’s situational awareness
of the driving task that allowed the driver to be more
productive in a secondary task [43].

Unfortunately, humans are often prone to attempting a
secondary task in a vehicle with autonomous assistance
features when their full attention is required for the driving
task. There is some question on the part of researchers [44],
[45], the industry [46], and other associations [47] on the
effectiveness of autonomous vehicle assistance at less than
level 4. There have been several high-profile incidents of
operators of vehicles with autonomous assistance that re-
quire constant human attention becoming highly distracted
instead of maintaining awareness of their vehicle’s surround-
ings [48], [49], [50]. California has passed a law attempting
to prevent names for autonomous assistance features that
may influence a driver to put more trust than warranted in the
system and allow himself to become distracted and unable to
take control when necessary [51]. Zeeb et al. found that low
levels of autonomy can actually lead to higher levels of driver
distraction and unsafe action [45] which mirrors findings by
AAA [47]. In the face of these shortcomings, several parties
question the effectiveness of driver assistance and wonder
whether higher levels of autonomy that still require human
takeover (such as level 3) are of any value, leading to an
increased focus on level 4 and level 5 autonomy [40].

It has long been recognized that in order for an au-
tonomous vehicle to be effective on the road among vehicles
operated by human input alone, it must operate at the same
level as a vehicle driven by a human [52]. A study in Italy put
vehicles with level 2 autonomy (lane-centering and follow
distance control) to a Turing test with 550 university students
on a loop of local roads. If a passenger could not determine
whether the system had been engaged, the system passed
the Turing test. The authors found that most systems were
able to pass such a Turing test and that steering input was
more likely to be detected as controlled by an autonomous
system then speed control [53]. If a system acts in a way that
is indistinguishable from a human driver from the point of
view of a passenger, it is likely that other drivers on the road
with an autonomous system will find the system’s actions
more predictable. To accurately generate such behavior for
an autonomous vehicle, Zhang et al. developed a Bayesian
game-theory approach that varies an autonomous vehicle’s
aggression (scaled from “polite” to “aggressive”) based on
the behaviors of other vehicles on the road. The authors
also subjugated their system to a Turing test and found that
most participants in the study could not differentiate between
the behavior of their autonomous system or a human and



therefore found the system to be generally predictable [54].

When interacting with other human drivers, a human driver
often expects informal visual cues from those other drivers.
For example, if two drivers meet at a 4-way stop and there
is confusion as to who has the right-of-way, one driver will
often “wave” the other through the intersection. Similarly,
one driver might flash his high beams or make a variety of
potentially-potent hand gestures to signal displeasure with
another road user. Drivers and even pedestrians rely on
establishing eye contact with a human driver to establish that
driver’s acknowledgement of their presence. Human drivers
are also extremely prone to error, and may for example
neglect to activate turn signals even when appropriate. In
such a case, another human driver in a vehicle behind the
driver neglecting to signal is often able to anticipate the
forward driver’s intentions by observing a gradual shift in
the lane towards the intended direction of turn. A standard
vehicle with no modifications beyond those absolutely nec-
essary for autonomy is both unable to send such informal
signals and unable to interpret signals from human opera-
tors. There are certain situations in which simply following
existing statutes of road behavior (ex. appropriately using
turn signals) will not be sufficient for autonomous-human
driver interaction, and an autonomous vehicle resembling
those on the road would be unable to make hand signals [55].
Kent Larson’s group at MIT developed a prototype vehicle
equipped with mechanical “eyes” that swivel and illuminate
to simulate eye contact and additional illumination to signal
intent of motion [56]. A system applied to a semi truck that
illuminates an LED light bar signaling intent to turn and
following distance was entered into a competition for internal
and external interfaces and won. The developers applied the
“show, don’t tell” principle of signaling intent to action with-
out explanation of reasoning modeled after human-animal
interaction [57]. More complicated displays that can present
more information on an autonomous vehicle’s intentions have
also been developed [58].

Not much work has been published on recognizing ges-
tures from nearby drivers, presumably because sensing a
driver through the glass of the windscreen or oft-tinted
windows is a difficult obstacle to overcome. Work has been
published on systems for autonomous cars to recognize
traffic control gestures based on a neural network [59].
Geng et al. applied a neural network to infrared image data
to enable an autonomous vehicle recognize a multitude of
gestures from any nearby humans. Importantly, a infrared
camera allows an image processor to easily detect humans
against the background [60].

Pedestrians, cyclists, motorcyclists, wheelchair-users,
small electric scooter riders, skateboarders, and other road-
users that exist outside the safety structures afforded by
increasingly-large and heavy vehicles must be able to exist
on roadways among autonomous vehicles. These non-car
roadway denizens are less uniform than other vehicles and
are often more erratic, often lacking basic indicators expected
on larger vehicles such as turn signals and brake lights as
well as often failing to adhere to road use codes. These

difficulties presented to autonomous vehicles and strategies
to overcome them have been cataloged by Reyes-Mufoz and
Guerrero-Ibafiez [61]. Detection and classification strategies
include neural-network approaches such as those proposed
by [59], [60] Autonomous-vehicle-to-human interfaces are
listed, including visual, acoustic, and anthropomorphic (such
as the eyes from [56]) methods. Less-obviously, they also list
vehicle-external interfaces for vulnerable road user detection,
such as relative location via smartphones [62]. From a
pedestrian’s perspective, Gronier et al. have developed a
questionnaire for pedestrians gauging their interactions with
autonomous vehicles to be used by regulatory bodies when
approving autonomous vehicle features [63].

An autonomous vehicle’s interaction with humans is not
limited to driving behavior. Beyond the split-second roadway
decisions made to avoid catastrophe, an autonomous vehicle
must also interact with humans around it when parked,
rolling down a sidewalk, or in a more open environments
such as in construction sites, in surveillance applications, and
military applications. In the case of small last-mile delivery
vehicles, there have been instances of vandalism [64]. For
autonomous vehicles to be truly effective, they must be
accepted by the general public. An acceptance model for
last-mile delivery vehicles has been created to gauge public
sentiment [65] and a small survey of public acceptance
of last-mile delivery vehicles conducted in Germany found
mostly ambivalence, though it is important to note that
acceptance almost certainly varies culture-to-culture [66].

Adverse public reaction is not limited only to last-mile
delivery autonomous vehicles. Moore et al. performed an
interesting study where they conspicuously placed a vehicle
made to look obviously autonomous on a loop of road in a
public place and recorded interactions with passersby, then
repeated this in three different countries. In each country,
instances of individuals conspicuously studying the vehicle
as well as people willfully obstructing or becoming clearly
upset with the vehicle were recorded on camera, which the
authors termed “greifing.” Pedestrians loitered in front of
or turned around and repositioned themselves in front of
the vehicle, hurled verbal abuse at the vehicle, and drove
erratically in front of the vehicle. A text message obtained
from a pedestrian who walked erratically in front of the
vehicle for some distance read that the vehicle “[did not]
have the courage to destroy [him].” The authors suggest that
an autonomous vehicle must have some level of aggression
(in contrast to waiting indefinitely at a crosswalk) and
must look as inconspicuous as possible to be truly effective
and must actively deter “greifing” as a matter of occupant
safety [67]. Researchers applying current autonomy methods
to a construction site found that most methods for dealing
with anomalous situations that arise when teaming with
humans and human-operated machinery were not sufficient
and that a tailor-made framework must be developed for
each specific theatre as most development of such methods
is conducted in heavily-controlled environments. They did
not find any significant gaps in relation to specific human
control of the various systems, however [68].



APPENDIX: DEEP LEARNING
Introduction

As autonomous vehicles proliferate on our roads, they
depend on a variety of technology to run effectively and
safely. One such technique that could greatly enhance the
performance of autonomous vehicles is deep learning, a
subset of machine learning. Deep learning algorithms can
perform object detection extremely fast relative to other
methods. A deep learning architecture, developed by 4
University of Washington alumni, by the name of “You
Only Look Once” can process images at 155 frames per
second [69]. Their model has outperformed other state-of-
the-art detection systems while also proving to be highly
accurate at recognizing distinct items, such as vehicles and
pedestrians, which may assist the vehicle to avoid collisions.
Not only are these deep learning models fast, but they
can be effectively applied to a wide variety of situations.
The main reason deep learning is being increasingly used
in robotics is that it can enable robots to learn from ex-
perience and adapt to changing environments. Traditional
robotics algorithms are often based on hand-crafted rules
and assumptions about the environment, which may not be
flexible enough to handle the complexity and variability of
real-world scenarios. In contrast, deep learning algorithms
can learn from large amounts of data and discover complex
patterns and relationships in the data that may be difficult
to capture with traditional approaches. One of the main
advantages of using deep learning in robotics is that it can
help robots to perceive and understand their environment
better. For example, deep learning algorithms can be used
for object recognition, segmentation, and tracking, which are
critical tasks for robotic systems that need to interact with
the world around them. Deep learning can also be used for
sensor fusion, where data from multiple sensors is combined
to provide a more comprehensive view of the environment.
Another advantage of using deep learning in robotics is that it
can help robots to plan and execute actions more effectively.
Deep learning can be used for online path planning, where
the robot plans its path in real-time based on its current
perception of the environment. It can also be used for control,
where the robot learns to perform complex tasks by learning
from demonstration or reinforcement learning.

Image Recognition

The first of these applications is that of image recognition.
Traffic signs, lane markings, pedestrians, and other aspects
of the road can all be recognized and identified using deep
learning models. For instance, deep learning-based methods
have been used for real-time lane detection and tracking in
autonomous vehicles as seen in a report from IEEE [70].
In the report, the authors go on to explain their real-time
approach based on deep learning for ego-lane detection
which achieves high accuracy and processing speed. The
approach involves using a CNN model to learn features of
input images and predict lane boundaries. It also uses a novel
post-processing method to refine said predictions. Their

approach has been shown to outperform several other state-
of-the-art methods and has proven effective in a real-world
scenario. Additionally, a method for traffic sign recognition
in autonomous vehicles using deep learning has been shown
to be highly effective [71]. Similar to the lane detection
methods, this deep learning stop sign detection is able to
outperform the competition. It does so through the use of
multiple convolutional layers which extract relevant features
from an input image and multiple fully connected layers that
are able to classify a street sign from the features it extracts.

Path Planning

Along with image recognition, deep learning can also
be useful in path planning by using the present state of
the roads and the position of the vehicle. For example, a
deep reinforcement learning-based method proposed for path
planning in autonomous vehicles by researchers from the
University of British Columbia proved that it could be quite
useful for path planning [72]. Their model is trained on a
large dataset of state-action pairs, where the states represent
the current environment and the actions represent the steering
and acceleration commands for the vehicle. Using said data,
the model then uses its current state to predict an optimal
path. We can see another example of deep learning used
in the context of path planning in the article titled “Path
planning of autonomous vehicles using deep learning” from
IEEE’s website [73]. This deep learning model uses a dataset
of labeled images which represent the environment around
the vehicle. It is then able to learn to predict a steering angle
and a throttle command given the current image, which can
then be used to generate a trajectory for the vehicle.

End-to-End Learning

End-to-end learning is yet another use for deep learning
models and is a promising approach for autonomous driving
which has the potential to revolutionize the field, allowing
systems to learn complex tasks directly from raw inputs.
One of such end-to-end learning frameworks for self-driving
cars proposed in the article ”End to end learning for self-
driving cars” uses a convolutional neural network (CNN) to
directly map raw pixel inputs to steering commands [74].
While traditional modular approaches that use hand-crafted
features work well, the authors show that their approach was
able to outperform them. The article titled “Deep learning
for autonomous driving: A review” also discusses the use of
end-to-end learning in the application of autonomous driving
[75]. The authors of this report highlight its potential to
improve performance and reduce development time. They
also note the need for large amounts of data and the difficulty
in interpreting the learned representations. This indicates that
while end-to-end learning is a useful method for autonomous
driving, it can also have its drawbacks.

Object Detection

Among the many ways that deep learning might enhance
autonomous vehicle performance is through object detection.
This use of machine learning might be considered to be



the most important by some from an ethical standpoint as
deep learning models can be used to detect and identify
many environmental items, including barriers, cars, and, most
importantly, pedestrians. We can see an example of this in
the article ”A pedestrian detection method for autonomous
vehicles based on deep learning” where the authors propose
a pedestrian detection method which, much like many of the
other aforementioned deep learning models, involves using
a convolutional neural network to learn a mapping between
input images and pedestrian locations [76]. That being said,
the sheer quantity and variety of objects that one has to
train models such as this one on are innumerable due to
the different sizes and shapes of people, barricades, and
other cars. Even so, the useability of deep learning object
detection models has proven useful and even essential in the
development of autonomous vehicles.

Vehicle Detection

Vehicle detection is another important task for autonomous
vehicles. There is a proposed deep convolutional neural
network for vehicle detection in unmanned aerial vehicle
imagery [77]. Their model was highly accurate in recog-
nizing various vehicle categories, such as trucks, buses, and
cars. A multi-task deep learning approach has been used
for vehicle detection in aerial images [78]. They created a
novel model that could accurately identify different vehicle
kinds while concurrently detecting cars and estimating their
orientations. A vehicle detection system is developed based
on convolutional neural networks [79]. Their program was
able to recognize vehicles in real-time and with excellent
accuracy even in challenging scenarios like congested traffic
and obstruction. Pedestrian Detection: Pedestrian detection is
critical for ensuring the safety of autonomous vehicles. Shi et
al. proposed a pedestrian detection algorithm based on deep
learning [80]. They implemented a brand-new feature pyra-
mid network in their model, which performed at the cutting
edge on numerous benchmarks for pedestrian identification.
S. Huang et al. developed a deep learning-based pedestrian
detection method for autonomous driving [81]. Their model
could detect pedestrians in real-time with high accuracy,
even in challenging scenarios such as occlusion and lighting
variations. Zhang et al. used transfer learning for real-time
pedestrian detection in autonomous vehicles [82]. A huge
dataset for pedestrian identification was used to fine-tune a
pre-trained convolutional neural network, and they attained
high accuracy in practical situations.

Traffic Sign Detection

Traffic sign detection is another important task for au-
tonomous vehicles. A method is developed for traffic sign de-
tection and recognition system based on deep learning [83].
In order to detect and recognize traffic signs in actual situ-
ations, their model made use of a multi-scale convolutional
neural network. Control Systems: Finally, deep learning can
be used to control the systems of autonomous vehicles, such
as steering, braking, and acceleration. For instance, an end-
to-end deep learning approach was used for steering angle

prediction in autonomous vehicles [74]. By learning to
regulate the steering angle directly from camera views, the
model was able to steer with a high degree of accuracy.
Similarly, a method proposed for autonomous driving using
deep learning, which achieved high accuracy in steering and
speed control [75].

Conclusion

With the ability to precisely detect their surroundings,
make defensible decisions, and navigate safely and effec-
tively, deep learning has the potential to greatly enhance the
performance of autonomous vehicles. Deep learning has the
potential to improve autonomous vehicle functionality and
hasten the advancement of this technology through object
identification, picture recognition, path planning, and control
systems. However, there are also some challenges and limita-
tions associated with using deep learning in robotics, which
may explain why it is not used as extensively as in some
other domains such as computer vision or natural language
processing. One of the challenges of using deep learning in
robotics is the need for large amounts of training data, which
can be difficult to obtain in some real-world robotics appli-
cations. Another challenge is that the use of deep learning
models can result in a lack of interpretability or transparency,
which can be problematic in situations where it is important
to understand how a robot arrived at a particular decision
or action. Robotic systems typically require real-time and
on-board processing, which can be challenging with deep
learning algorithms that are often computationally intensive
and may require significant computing resources, plus many
robotic systems use online algorithms like RRT* for path
planning to account for dynamically changing environment
whereas deep learning algorithms like (deep Q learning)
DQN will most likely fail when it encounters a situation
or training example it has not seen before. Additionally,
the stability and safety of a robotic system can be crucial,
and the use of deep learning algorithms may introduce
additional sources of uncertainty and risk, which need to be
carefully managed. Despite these challenges, deep learning
is being increasingly used in robotics, and researchers are
developing new methods to address these issues and improve
the performance, reliability, and safety of deep learning-
based robotic systems.
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