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Abstract— Mobile robots require a holistic understanding of
the semantics and geometry of their surroundings for tasks such
as route planning, navigation, and traversability estimation.
Bird’s-Eye-View (BEV) maps provide a particularly useful
spatial representation for such tasks, offering a unified top-
down view. However, the learned estimation of BEV for ground
robotic platforms has not been thoroughly explored. In this
work, we adapt an existing state-of-the-art (SOTA) model [1]
to a recently developed mobile robotic perception dataset [2]
to estimate a Bird’s Eye View (BEV) representation of the
semantics and elevation of the environment. We do so with
the goal of creating a useful benchmark for future researchers
using this dataset.

I. INTRODUCTION

Bird’s-Eye-View (BEV) projection is a useful technique in
robotic perception, involving fusing multi-sensor data into a
BEV map of the environment. This modality is particularly
useful for mobile robotics, due to its applicability for path
planning, exploration, and obstacle avoidance tasks. Because
of the simplified top-down view and the unified representa-
tion of multi sensor information, BEV maps can make these
tasks simpler and more tractable, as opposed to doing path
planning through a 3D voxel occupancy grid. Additionally,
BEV maps are a useful artifact for human understanding of
a scene, as humans are accustomed to navigating via BEV
maps.

Although there is a substantial body of work in visual BEV
projection for training and evaluation on autonomous vehicle
(AV) datasets [3]-[7], mobile ground robots (such as legged
and wheeled platforms) have not yet seen broad application
of these BEV methods. This is in large part due to the lack
of large-scale datasets for mobile robotics. Research for AV
perception has benefited from projects like the NuScenes
[8] and Waymo [9] datasets, but so far there has been no
such dataset for mobile robotics. To this end, researchers at
the ETH Ziirich Robotic Systems Lab have developed the
TartanGround dataset, with more than 1.4 million samples
[2].

This project aims to extend an existing SOTA architecture
such as PointBeV [1], which was built to perform BEV
occupancy prediction for autonomous vehicles, and train it to
perform semantic and elevation mapping tasks on the Tartan-
Ground dataset. These tasks, in particular semantic mapping,
are critical for robotic mobility in an environment because
they allow the robot to estimate the traversability cost of
paths it plans to take. Because the very recent release of the
TartanGround dataset, there is little on learned BEV with
synthetic data for mobile robotics. With these adaptations,
we hope to set a benchmark for future researchers to improve
on.

The contributions of this work are as follows.

o A pipeline that processes synthetic depth, semantic and
RGB images to produce BEV maps labels for training
and validation.

o An extension of an existing architecture to predict
multiclass semantics and 2.5D elevation maps on a
synthetic dataset.

o Training and evaluation of three different models, one
for each different type of environment in the dataset:
industrial, urban, and natural.

II. RELATED WORK

A. BEV projection

In existing BEV projection works, there are two main
methods for projecting camera features into the BEV space.
The first, pioneered by Lift Splat Shoot [6], [ifts every feature
along its respective camera ray using a predicted depth
distribution, and splats those contributions into the corre-
sponding BEV grid cells. This approach influenced many
other papers, including [3], [5], [10]-[12].Although these
methods do outperform separate monocular depth estimation
compared to BEV projection [6], the process of lifting and
splatting every feature is slow and expensive.

More recently, an approach for feature pulling has been de-
veloped. In this method, points in the BEV plane are formed
into vertical columns, and the voxels that form the columns
are then used to form queries into the image plane, after
which the queried features are aggregated back into the BEV
cell. This method is used in [4], [13], [14]. These feature-
pulling methods frequently employ transformers, leading
to better results but also longer training times due to the
increased model complexity.

In this work, we are choosing to base our project on
PointBeV [1], a recently published architecture that uses
the feature-pulling approach to BEV projection. A major
advantage of PointBeV is its implementation of a sparse
view transformation leveraging sparse point sampling, which
greatly reduces the memory footprint and training time of
the model while maintaining performance consistent with
state-of-the-art models in binary semantic segmentation tasks
[1]. The authors’ source code is open source and available
for adaptation. For these reasons, we choose to construct
our baseline with this model as the starting point. However,
PointBeV does not support multiclass semantic segmentation
and 2.5D elevation mapping, so in this work, we extend it to
support these tasks and train the model on the TartanGround
dataset.



B. Datasets

Although there exist many large datasets with multimodal
data and quality annotations for autonomous vehicles (well
known ones include NuScenes [8] and Waymo [9]), there
exist far fewer for ground mobile robotics. Those that do
exist are relatively small, with less than 10,000 frames [15],
[16], and not well-suited for training deep-learning models.

The comparatively large TartanGround [2] dataset offers
more than 1.4 million frames, making it much more useful
for deep learning research. However, the synthetic data does
come with its own challenges, such as inconsistent semantic
labels and gaps from simulation training to deployment on
a real robotic platform. Because it is a new dataset, we aim
to set a baseline for future researchers to improve upon for
BEV tasks.

I1I. METHODOLOGY
A. BEV preprocessing

Because BEV maps are not included in the TartanGround
dataset, we needed to generate training data from the sensor
information available in the dataset. We have access to the
RGB, depth, and labeled semantic images, as well as robot
poses at each sample in the trajectory. To generate the
necessary BEV maps, we take the following steps.

1) Cluster semantics classes based on navigability: Given
the diversity of semantic classes in the dataset and the
intended use of the BEV maps we are generating (robotic
mobility), we cluster the classes based on their navigability.
Some of the resulting classes are navigable_flat and ambigu-
ous_vegetation, representing the estimated traversability of
the class and the larger category it falls into. These clusters
are made once for all the data.

2) Construct 3D point cloud from depth and image data:
We then use the utilities from the TartanGround package
to construct a point cloud of the environment from all the
viewpoints we have seen in our trajectory. Each point is
labeled with the relevant semantic class.

3) Crop and rotate the point cloud per robot pose: For
each pose in the trajectory, we then crop the point cloud to
the dimensions of our desired map. For the model we have
trained, we use a 20x20 meter grid and consider only points
less than 3 meters above or below the robot’s camera frame.

4) Compute ground and ceiling layers: We extract a
maximum ground layer as in [10]. For each grid cell in the
map, we take the lowest point as the minimum ground layer.
We then ascend the column until there is a gap of more
than 1.5 meters between points, at which point we take the
lower point before the gap as the maximum ground layer
and the upper point after the gap as the ceiling layer. In
this work, we only consider the maximum ground layer, as
it determines where a ground robot could reasonably move,
but future works could also utilize the minimum ground and
ceiling layers.

5) De-noise and post process semantic and elevation
maps: Using the semantic and elevation maps, we apply a
smoothing kernel to the semantics in order to reduce noise.
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This is especially important for natural environments, where
there are many small features, such as low lying grasses,
that add noise to the maps and uncertainty when training the
model.

B. Camera setup

Although the TartanGround dataset includes tools to easily
resample the RGB images to different camera intrinsics and
extrinsics, we chose to retain the original four surround
cameras that were available in the dataset, to make it simpler
for future researchers to replicate our results. These four
cameras were oriented front (0°), left (90°), back (180°),
and right (270°), each with a 90° field of view (FOV) and
a pinhole camera model. There is no overlap between the
camera FOVs.

C. Model Architecture

As mentioned above, this work builds on the architecture
presented in PointBeV [1]. In Figure[T] this architecture can
be observed with the modified task heads presented in this
work.

The inputs to the network are primarily the camera images
and camera calibration parameters. LiDAR is also an optional
input, fed to the model in the same BEV representation as
the output map, with LiDAR hits collapsed into a plane.

The RGB images are fed into a pretrained Efficient-
Net backbone, which extracts camera features. The feature-
pulling method described above is used at this point. The



point sampler selects BEV grid cells, forms columns of
voxels in those grid cells, and queries the related camera
features in the feature-pulling step. These features are then
collapsed into a 2D BEV view. The optional LiDAR data is
used to improve the efficiency of the sampling step. During
training and inference, we follow PointBeV’s two stage
coarse/fine sampling strategy. The coarse pass uniformly
samples a small subset of BEV grid cells, whereas the
following fine pass densifies around the highest confidence
anchor points found in the coarse pass.

Once we have these features in the BEV view represen-
tation, we feed them into a UNet that encodes and decodes
the map into a set of unified BEV features.

We then have two different task heads that take these uni-
fied BEV features as input. Both heads, illustrated in Figure
[2] consist of concatenated convolutional layers, ending with
a softmax and the extraction of the most likely class or
elevation bin.

D. Training

To test the effectiveness of our pipeline, we trained three
different models, each in a different type of environments in
the TartanGround dataset. Figure [3] shows a visual overview
of a selection of the environments used. The motivation
behind this split was that each type of environment could
have different semantic groupings and that it would be easier
for each model to learn how the associated semantics. In
addition, it is interesting to compare the results from more
structured environments (industrial and urban) to those from
unstructured environments (natural).

The models were trained using the Adam optimizer, with
an adaptive learning rate and using cross-entropy loss. Each
model was trained for 100 epochs on 4 NVIDIA RTX4090s.
Due to the different sizes of the datasets, the training time
took from 6 to 12 hours. We trained each model on 5-8
environments, leaving one exclusively for validation and one
exclusively for testing. Because the train, validation, and test
splits were made using entire trajectories and environments,
there is a considerable amount of variance in the amount of
samples in each split for each model.

Among the three models, there was about 180 GB of
training data in total, yielding the frames listed in Table
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Fig. 3. Example selection of environments each model was trained on

TABLE I
NUMBER OF FRAMES IN THE DATA SPLIT

Model Train Val Test Total

Industrial 6028 1616 2686 | 10330

Urban 3814 3863 2653 | 10330

Natural 6735 3369 3243 | 13347

Total 16577 8848 8582 \ 34007
IV. RESULTS

Evaluation of the models on their respective test sets
reveals interesting findings, which we will explore in the
following subsections. Figure [] illustrates an example of
inference on both semantics and elevation tasks. Table [III
details the metrics that we used to evaluate the models: mean
Intersection over Union (mloU) and frequency-weighted
Intersection over Union (FWIoU) for the semantic segmenta-
tion task, and Mean Absolute Error (MAE) for the elevation
task.

A. Semantic task head

Semantic segmentation proved to be a challenging task for
this model. Quantitatively, the mIoU for each of the models
is quite low, whereas the FWIoU is comparatively high. Both
of these metrics were included because in many cases, the
number of pixels containing one of the less frequent classes
was rather small, and frequent classes such as navigable _flat
made up the majority of many images. Qualitatively, the
model seems to identify larger swaths of uniform terrain well,
but high-frequency details, such as grasses or smaller rocks,
are frequently lost.

A challenge encountered during the training of these mod-
els was that the semantic classes provided in TartanGround
are fairly limiting from the point of view of determin-
ing traversability for ground robots. For example, in the
ForestEnv environment, both large obstacles such as trees
and small, possibly navigable objects such as low grass were
labeled as plant. So, despite the fact that the end use of
this model would likely want a distinction between these
types of obstacle, we needed to group them both under
nonnavigable_static. These distinctions made it difficult to
train a model across different environments.

B. Elevation task head

Despite having no access to geometric information, only
RGB camera images, the elevation task head performs
surprisingly well, with a highest MAE of 0.5 meters in
unstructured natural environments.

Qualitatively, the elevation model also struggles with high-
frequency details and elements of the environment that are
further away from the ego position, but overall performs
fairly well on the more structured environments in the
industrial and urban models.



TABLE I
RESULTS OF INFERENCE ON TEST SET

Model Distribution  # Test Frames Semantic mIoU T Semantic FWIoU 1  Elevation MAE (m) |
Industrial In train 1349 0.328 0.573 0.230
WS Not in train 1849 0.174 0.682 0.326
Urban In train 733 0.271 0.807 0.178
Not in train 1920 0.109 0.310 0.401

Natural In train 596 0.300 0.699 0.240
Not in train 2090 0.164 0.416 0.521

C. Lack of generalization

In this discussion, we distinguish between the frames in-
distribution and not in-distribution, which are frames from
the test set where the environment was seen before in the
training process or not, respectively. This does not mean
that the model was trained on images from the test set.
Rather, it distinguishes between between environments that
were reserved completely for test-time inference. As an
example, ForestEnv was an environment that had trajectories
in both the training and test sets, whereas GreatMarsh is
an environment that was entirely reserved for validation and
testing. This was done to test how the model generalizes to
new environments that have not been previously seen.

As seen in Table [II} there is a definite difference in the
performance of the models on environments that were in-
distribution and those that were not in-distribution, with the
MAE being almost double in the latter case, and the mloU
being about half.

We have two hypotheses for why this could be. The first is
that the model has difficulty transferring its learnings about
the clustered semantic classes from one environment to the
other. This would be expected given the amount of data we
are training on, which is on the order of only thousands of
samples (see Table [[). This issue could certainly be solved
by training on more and more varied data, which is an
option for future researchers given the diversity and size
of the TartanGround dataset. However, due to limited time
and resources, we trained these models with a subset of all
available data.

The second hypothesis for why the model is failing to
generalize is that it could be learning the geometry of the
environment from the training set. While no images are
identical between the test and train sets, due to the spatially
small area that all the trajectories that are pulled from,
it is very likely that the model has seen the environment
from similar viewpoints in the test set as it had trained on
previously. However, we cannot test whether this is the case
without dramatically reducing the amount of data we train
on, because the trajectories per environment in TartanGround
are overlapping and hence not easily separable so that two
different sets see different areas. This is a limitation of the
dataset that we unfortunately did not have time to work
around.
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V. CONCLUSIONS

In this paper, we have presented a baseline for future
researchers to build upon for BEV mapping tasks in the
TartanGround dataset. We trained three different models on a
subset of the data, and found that the models do not general-
ize well to new environments. They can, however, learn quite
well the associated semantics and elevation in environments
they have already seen. We have also found that there are
challenges when using the TartanGround dataset that make
it difficult to determine why this lack of generalization is the
case.

Future directions for this research could include training
data with more precise semantic labeling, reducing spatial
overlap between train/test trajectories to better assess gener-
alization, or direct integration of LiDAR data for elevation
estimation.

APPENDIX

A. Additional inference examples

See figure [5] for more inference examples.

B. Source Code

The code used to process the data and train the models is
available at this GitHub repository:
github.com/leggedrobotics/semantic_bev_mapping


https://github.com/leggedrobotics/semantic_bev_mapping
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C. Demonstration Video

For more examples of the performance of the models, see
the following video:

polybox.ethz.ch/index.php/s/MKE488JLfbAgggX
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